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A Hybrid Electric Vehicle (HEV) is a complex electro-mechanical-chemical 

system that involves two or more energy sources. The inherent advantages of HEVs are 

their increased fuel economy, reduced harmful emissions and better vehicle performance. 

The extent of improvement in fuel economy and vehicle performance greatly depends on 

selecting optimal component sizes. The complex interaction between the various 

components makes it difficult to size specific components manually or analytically. So, 

simulation-based multi-variable design optimization is a possible solution for such kind 

of system level design problems. The multi-modal, noisy and discontinuous nature of the 

HEV design requires the use of derivative-free global algorithms because the derivative-

based local algorithms work poorly with such design problems. 

In this thesis, a Hybrid Vehicle is optimized using various Global Algorithms – 

DIviding RECTangles (DIRECT), Simulated Annealing (SA), Genetic Algorithm (GA), 

and Particle Swarm Optimization (PSO). The objective of this study is to increase the 

overall fuel economy on a composite of city and highway driving cycle and to improve 



www.manaraa.com

  

 

 

 

the vehicle performance. The performance of each algorithm is compared on a six 

variable hybrid electric vehicle design problem. Powertrain System Analysis Tool 

(PSAT), a state-of-the-art powertrain simulator is used as the vehicle simulator. Further, a 

Hybrid algorithm that is a combination of global and local algorithm is developed to 

improve the convergence of the global algorithms. 
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CHAPTER I  

INTRODUCTION 

1.1 Introduction 

Conventional automobiles are the major source of energy consumption and 

airborne pollutants all over the world. The low efficiency of the conventional Internal 

Combustion Engine (ICE) vehicles results in lower fuel economy and high emissions [1]. 

To address the environmental concerns, California Air Regulatory Board (CARB) 

proposed regulations that would require a progressively increasing percentage of 

automobiles to be zero emissions vehicles beginning in the year 1998. Therefore the need 

for alternative vehicles improving the fuel economy and reducing emissions is growing. 

Electric Vehicle (EV) is the best possible solution for an efficient, environmental friendly 

and sustainable vehicle for urban transportation. The higher efficiency of Electric Vehicle 

automatically results in a higher fuel economy.  

A Hybrid Electric Vehicle, powered by Internal Combustion Engine (ICE) and 

energy storage, is being given more attention because of the advantages associated with 

it. The inherent advantages of HEVs are their increased fuel economy, reduced harmful 

emissions and better vehicle performance. Various vehicle simulators are available for 

the analysis of Hybrid Electric Vehicles. Some of the most widely tools are Powertrain 

System Analysis Tool (PSAT), Advanced Vehicle Simulator (ADVISOR), and Versatile 

Electrically Peaking Hybrid Vehicle (V-Elph) tool etc. The fuel economy and the 

1 
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2 
performance of a hybrid vehicle greatly depend on the component selection. In the 

modeling process, a component is modeled using many design variables. An optimal 

selection of the design variables is required for a better performance of the hybrid 

powertrain. This is achieved by Design Optimization. Design Optimization searches for 

various combinations of design variables and selects the components for greatest 

improvement. Since this design problem is a multi-modal, noisy and discontinuous 

problem, Global optimization algorithms best fits this problem. 

1.2 Hybrid Electric Vehicle  

Electric vehicle (EV) is a road vehicle which involves electric propulsion. With 

this broad definition in mind, EVs can be classified depending on the source of the 

propulsion into Battery Electric Vehicles (BEV), Hybrid Electric Vehicles (HEV), and 

Fuel Cell Electric Vehicle (FCEV). The battery is the only source of propulsion in BEVs, 

supplying the needed electrical energy to the electrical components and accessories.  The 

source of propulsion in a HEV comes from two or more sources, usually a combination 

of combustion engine and energy storage. Therefore, it combines the range advantage of 

a conventional vehicle with the environmental benefits of a pure electric vehicle. FCEV 

uses fuel cell as its source of energy. Fuel cell vehicles turn hydrogen fuel and oxygen 

into electricity. The electricity generated then powers an electric motor. 

A hybrid vehicle is a vehicle with multiple distinct power sources that can be 

separately or simultaneously used to propel the vehicle. The energy can come from a 

number of different sources like batteries, gasoline, solar energy, fuel-cell, ultracapacitor, 

or flywheels. The common and the most promising hybrid vehicle today is the one using 
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3 
an internal combustion engine and a battery powering a motor. The electric motor is used 

to improve the efficiency and the vehicular emissions while the ICE provides extended 

range capability. Thus, HEV makes the best use of existing technology by providing the 

benefits of both electric and conventional vehicles, while minimizing the shortcomings of 

each. One of the interesting features of HEV is that it uses the regenerative braking to 

make sure that the decelerating kinetic energy is stored back to the onboard battery. In a 

conventional vehicle, this kinetic energy is lost as heat. The availability of two energy 

sources allows for different configurations, but generally, they can be classified into 

series, parallel, series-parallel, and complex hybrid systems. These HEV systems are 

discussed in section 1.3. 

1.3 HEV Architectures 

The HEV configurations are shown in Figure 1.1 

Figure 1.1 HEV Configurations 
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4 
1.3.1 Series Hybrid Electric Vehicle 

In a series hybrid system shown in Figure 1.1a, the mechanical output from the 

ICE is converted to electrical energy using a generator and the electrical energy is either 

used to charge the battery or is bypassed from the battery to the motor that propels the 

wheels. 

The advantage of a series configuration is that since the engine never idles, there 

are less emissions; therefore, it is better for the environment. Some other advantages of 

series hybrid are flexibility of location of engine-generator set, simplicity in design and 

stability for short trips. The disadvantage of series hybrids is that it needs three 

propulsion components: ICE, generator and motor. Therefore, the efficiency of series 

hybrid is generally lower. The motor must be designed for the maximum sustained power 

that the vehicle may require, such as when climbing a high grade. However, the vehicle 

operates below the maximum power most of the time. All three drive train components 

need to be sized for maximum power for long-distance, sustained, and high speed 

driving. Otherwise, the batteries will exhaust fairly quickly, leaving ICE to supply all the 

power through the generator [2]. 

1.3.2 Parallel Hybrid Electric Vehicle 

In a parallel configuration shown in Figure 1.1b, there is a direct mechanical 

connection from both the electric power unit and the gasoline engine to the wheels. Thus, 

the propulsion may be supplied by the ICE alone, or by the electric motor alone, or both. 

The power delivered to the wheels is determined by the control strategy. In case of a high 

power demand such as for high acceleration, both the ICE and electric motor deliver 
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5 
power to the wheels. In less demanding situations, the ICE can be operated in the 

efficient mode to deliver a higher power than the power required at the wheels; the excess 

power is stored in the batteries for later use. The other option will be to operate the 

electric motor alone to drive the vehicle. This has the advantage of operating the ICE in a 

more efficient mode or shutting off during low efficiency operation. During long and 

steady state cruises, the ICE engine can alone drive the wheels avoiding the inherent 

inefficiency of the battery. The electric motor can be used as a generator to charge the 

battery by regenerative braking or absorbing the power from the ICE when the output 

power from the ICE is greater than the power required at the wheels.  

The main advantage of parallel HEVs is improved dynamic performance due to 

the direct coupling between the ICE, electric motor, and the wheels. The disadvantage 

with the ICE being directly coupled to the wheels is that there is more transient speed 

operation than in a series vehicle. This tends to result in poorer efficiency and increased 

emissions. 

1.3.3 Series – Parallel Hybrid Electric Vehicle 

In these systems as shown in Figure 1.1c, the ICE is also used to charge the 

battery. This makes sure that the battery is properly charged even in the long drive cycles. 

Although possessing the advantageous features of both series and parallel HEVs, the 

series-parallel HEVs are relatively more complicated and costly. Nevertheless, with the 

advances in control and manufacturing technologies, some modern HEVs like Toyota 

Prius adopt this configuration [3]. 
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6 
1.3.4 Complex Hybrid Electric Vehicle 

The Complex hybrid systems shown in Figure 1.1d involve a complex 

configuration. It has all the features of the above discussed hybrid systems and a unique 

feature of bidirectional power flow of the electric motor. This bidirectional power flow 

can allow for versatile operating modes, especially for the system involving the ICE and 

two motors. The inherent advantage of complex hybrid systems is the configurability and 

the main disadvantage is the complexity and cost [4]. 

1.4 PSAT 

The Powertrain System Analysis Toolkit (PSAT) is a state-of-the-art flexible 

simulation package developed by Argonne National Laboratory and sponsored by the US 

Department of Energy (DOE). PSAT was developed in MATLAB/Simulink environment 

and is set up with a graphical user interface (GUI), which makes it user friendly and easy 

to learn. A screen capture of the PSAT GUI is shown in Figure 1.2. PSAT is a forward 

looking model and allows users to simulate more than 200 predefined configurations, 

including conventional, electric, fuel cell, and hybrids (parallel, series, power split, 

series-parallel). The large library of component models and data allows users to simulate 

light, medium, and heavy-duty vehicles [5].  

The presence of quasi-steady models and control strategies in PSAT sets it apart 

from other steady state simulation tools like ADVISOR. This feature makes it predict fuel 

economy and performance of a vehicle more accurately. PSAT is designed to co-simulate 

with other environments and is capable of running optimization routines. Hardware-in-

the-loop (HIL) testing is made possible in PSAT with the help of PSAT-PRO, a control 
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7 
code to support the component and vehicle control. The main drawbacks of PSAT are it 

does not support any component calibration and runs with a too large sampling time [6].  

Figure 1.2 PSAT Graphical User Interface 

1.5 Optimization 

Hybrid Electric Vehicles are recently given more attention because of their ability 

to increase the fuel economy and performance while reducing the emissions.  The extent 

of improvement greatly depends on selection of each component and control strategy 

parameters. The complex interaction between the various components makes it difficult 

to size specific components manually or analytically. So, simulation-based optimization 

is a possible solution for such kind of system level design problems. Optimization tries to 
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8 
minimize or maximize an objective function by searching the multi-dimensional design 

space for the various combinations of component sizes (design variables) and selecting 

the best combination at each iteration. In other words, it eliminates the bad designs while 

keeping the good designs. 

The choice of optimization algorithm is also an important issue. Local algorithms 

use derivative information to find the local minima and they do not search the entire 

design space. On the other hand, global algorithms search the entire design space and find 

the global optimum. Also, global algorithms do not require the derivative information. 

With this in mind and also taking in to consideration the noisy, discontinuous, and multi-

modal nature of the design problem, derivative-free global algorithms best suits this 

design problem. Various optimization algorithms already exist to solve such complex 

design problems. Global algorithms like DIRECT, Simulated Annealing (SA), Genetic 

Algorithm (GA), and Particle Swarm Optimization (PSO) etc., aptly suit this problem. 

These optimization algorithms are looped with the simulation tool which feedbacks the 

objective value and the vehicle performance values. The optimization searches the multi-

dimensional design and reaches a better design point using some heuristic (deterministic) 

or random (stochastic) way depending upon the algorithm used.  

1.6 Thesis Scope and Organization 

Optimization of a Parallel Hybrid Electric Vehicle is the primary focus of this 

thesis. Powertrain System Analysis Tool is used as the vehicle simulator. A parametric 

study is done to see the effect of each component size on the final objective. Local 

optimization routines suffer in finding the global optimum and miserably fail when faced 
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9 
with discontinuous responses. In this thesis, a Parallel Hybrid Vehicle is optimized using 

various global algorithms – DIRECT (DIviding RECTangles), Simulated Annealing 

(SA), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO). Further, a 

Hybrid Algorithm, which is a combination of global and local algorithm, is used to 

optimize two simple test functions. DIRECT is a deterministic algorithm whereas the 

other three are stochastic methods. Deterministic and Stochastic algorithms are taken 

intentionally to see the performance of different kinds of algorithms on the design 

problem. A comparison of the four optimization algorithms is done based on the 

improvement in the fuel economy. These optimization routines can be embedded in to the 

simulation tools for a better performance. Global algorithms can be coupled with local 

algorithms for better convergence. 

The organization of this thesis is as follows. Chapter 2 gives the background 

information related to optimization. The optimization process is explained and a brief 

description about the local and global based algorithms is presented. A parametric study 

is provided to see the effect of various component sizes on the fuel economy. Chapter 3 

explains in detail about the algorithms used in this study – DIRECT, SA, GA, and PSO. 

Each algorithm is provided with a flowchart for easy understanding. The advantages and 

disadvantages of each algorithm are also provided. Chapter 5 is the main section of this 

thesis, stating the design problem and the results associated with it. Chapter 6 deals with 

the conclusions of this study and the future work. 



www.manaraa.com

   

 

 

 

 

 

 

 

 

CHAPTER II  

OPTIMIZATION 

2.1 Background 

Optimization is the process of minimizing or maximizing an objective function 

while satisfying the prevailing constraints [7]. A general non-linear constrained 

optimization problem is illustrated in the following example: 

min 
w r t. . 

f ( )x = weight of the 
x = {engine size , motor 

vehicle 
size } 

s t. . 0 − 60 mph ≤ 12 s 
40 − 60 mph ≤ 5.3s 
0 − 85 mph ≤ 23 s 
max speed ≥ 85 mph 

In the above design problem, the objective is the minimization of the vehicle 

weight, design variables are the engine and motor sizes, and the constraints are the 

performance limits on the vehicle. Here, the engine and motor size doesn’t mean the 

actual physical sizes or dimensions of the components but instead relate to the power 

ratings of the respective components. The optimization algorithm searches the design 

space defined by the bounds on the design variables and identifies a point that minimizes 

the objective function while satisfying the constraints. The objective function is evaluated 

by the vehicle analysis/simulation tool. Various computer programs like SIMPLEV [8], 

MARVEL[9], V-Elph [10], Carsim 2.5.4 [11], ADVISOR [12], PSAT, etc. are 

10 
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11 
available for the analysis of the hybrid vehicles. An illustration of the optimization 

process is given in Figure 2.1. 

Figure 2.1 Optimization process 

It can be seen from Figure 2.1 that the vehicle simulator is looped with the 

optimization program. The optimization process solves the design problem by iteratively 

calling the optimization routine to modify the design variables and then calling the 

vehicle simulator to calculate the response. This process is continued until the number of 

iterations gets exhausted or a predefined accuracy is obtained. 

A hybrid electric vehicle has the potential to improve the fuel economy compared 

to conventional vehicles without sacrificing performance, but the extent of fuel savings is 

highly dependent on component optimization. The components include energy sources, 

transmission, control strategy, vehicle body, etc. The variables associated with these 

components are taken as design variables. For a Hybrid Electric Vehicle design there 

would be hundreds of design variables related to energy sources, control strategy, 
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12 
transmission, vehicle, etc. Optimizing all the design variables requires very high 

computation time and cost. Thus, in this thesis, limited number of design variables is 

considered. 

2.2 Parametric Study 

The effect of various design variables on the objective function is studied here. 

The fuel economy is taken as the objective function and its variation is studied subject to 

changes in design variables related to hybrid vehicle component sizes. The design 

variables include the power ratings of the fuel converter (ICE), motor controller, number 

of battery cells, and the final drive ratio. The description of the design variables is given 

in Table 2.1. The vehicle model gui_par_midsize_cavalier_ISG_in.m (available in the 

PSAT model library) is taken for the parametric study. The study is basically limited to 

four design variables and can be extended to more number of variables. 

Table 2.1 Design variables for parametric study 

Variable Description 

eng.pwr_max_des Fuel Converter (ICE) power rating 

mc.pwr_max_des Motor Controller power rating 

ess.init.num_module Battery number of cells 

fd.init.ratio Final drive ratio 

The selected HEV is simulated on a composite of city and highway driving 

cycles in PSAT to get the fuel economy. Note here the best values of the design variables 
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13 
obtained from this study can only maximize the fuel economy but may not improve the 

vehicle performance.  

Figure 2.2 shows the plot for the fuel economy obtained for different power rating 

values of fuel converter. The size of the fuel converter is varied between 60 kW to 100 

kW. This plot indicates that the fuel economy is higher for fuel converter power ratings 

between 60 kW and 70 kW. This is because of the lesser weight of the fuel converter at 

these power ratings. The maximum fuel economy is achieved at a fuel converter power 

rating of 66 kW. After 70 kW there is a sharp decline in the fuel economy because of the 

additional weight of the fuel converter to the vehicle weight.  

Figure 2.2 Fuel Economy dependence on fuel converter power rating 

Figure 2.3 shows the dependence of the fuel economy with respect to motor 

power rating. The power rating of the motor converter is varied between 10 kW to 80 

kW. The fuel economy reached a maximum value at a motor power rating of 20 kW and 
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14 
decreased for higher motor power rating values. Even in this case, the motor power rating 

of 20 kW is only designed to achieve maximum fuel economy. 

Figure 2.3 Fuel Economy dependence on the motor controller power rating 

The dependence of the composite fuel economy on the number of battery cells is 

shown in Figure 2.4. The fuel economy is higher for battery cells between 260 and 270. 

Similarly, Figure 2.5 shows the dependence of the fuel economy on the final drive ratio. 

The fuel economy reached the optimal value for a final drive ratio of 3.9. 
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Figure 2.4 Fuel Economy dependence on battery number cells 

Figure 2.5 Fuel economy dependence on final drive ratio 
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2.3 Optimization Algorithms 

Optimization methods can be divided into derivative and non-derivative methods. 

Gradient based algorithms like Sequential Quadratic Programming (SQP) [13] are good 

at finding local minima. SQP uses the derivatives of the objective function to find the 

path of greatest improvement to quickly find a minimum. Gradient based methods works 

fine for smooth, continuous functions but often fails miserably when faced with noisy and 

discontinuous functions. The major disadvantage of local optimizers is that they do not 

search the entire design space and so cannot find the global minimum. 

This thesis focuses on non-derivative methods such as DIRECT, SA, GA, and 

PSO. Non-gradient methods are more robust in locating the global optima and are 

applicable in a broader set of problem areas. Another advantage of these methods is that 

they do not require any derivatives of the objective function in order to find the optimum. 

Hence, they are also known as blackbox methods. Here the objective function values are 

the results of complex computer simulations.  

However the disadvantages are that we cannot prove that we have found the 

actual optima. This also applies partly to gradient methods as they might get caught in 

local optima. By conducting several optimizations with different initial conditions, it 

could be argued that the global optimum is truly found. Another disadvantage with non-

gradient methods is that they usually require more function evaluations than gradient 

methods, and are thus more computationally expensive. However, as the computing 

power of the computers are increasing this disadvantage is diminishing. Furthermore, 

most non-gradient methods are well suited for implementation on parallel processors.  
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CHAPTER III 

OPTIMIZATION ALGORITHMS 

3.1 DIRECT 

DIRECT is a global optimization algorithm developed by Donald R. Jones [14]. 

This algorithm is a modification of the standard Lipschitzian approach that eliminates the 

need to specify the Lipschitz constant [15]. Lipschitz constant is a weighing parameter, 

which decides the emphasis on the global and the local search. The use of Lipschitz 

constant is eliminated in [14] by searching all possible values for the Lipchitz constant, 

thus putting a balanced emphasis on both the global and local search.  

3.1.1 Algorithm Description 

DIRECT is a modification of a one dimensional Lipschitzian algorithm by 

Shubert [16] and extending it to multi-dimensional problem. The Lipschitzian approach 

by Shubert is given as follows: 

A function f ( )x  defined in the closed interval [l,u] is said to have a lower bound 

such that there exists a positive Lipschitz constant K and satisfies the following 

condition: 

' ' f ( )x − f (x ) ≤ K x − x for all x, x '∈ [a, b]  (1) 

17 
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18 
The above equation states that the rate of change of the function f ( )x  should be 

less than the change between x  and x'  multiplied by K . If we substitute a  for x'  and 

b for x'  in equation (1), we see that f (x)  must satisfy the following inequalities: 

f ( )x ≤ f (a)− K (x − a)      (2)  

f ( )x ≤ f (b)− K (x − b)  (3) 

These equations represent two lines with slopes − K  and + K  as shown in Figure 3.1. 

These two lines forms a V  shape and the lowest value of f (x)  can attain at the bottom of 

the V . This minimum point is denoted by X (a,b, f , K ) and the corresponding lower 

bound of f is denoted by f (a,b, f , K )min 

= ) a ( )X (a,b, f , K ) (a + b / 2 + [ f ( )− f b ]/ 2K  (4) 

f (a,b, f , K ) = [ f ( )a + f (b)]/ 2 − K (b − a)  (5)min 

where f ( )a  and f ( )b  are the function values at a  andb . 

Figure 3.1 Lower bound of a function f (x) using Lipschitz Constant 
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19 
This minimum point is taken as x1 . This new point divides the search space in to 

two intervals. Then one of the two intervals with the least fmin  is selected for division. 

This division is continued until some prespecified tolerance of the final solution is met. 

Equation (5) explains the local and global search of the algorithm. The first term leads to 

the local search and the second term leads to the global search. And the Lipschitz 

constant serves as a relative weight between local and global search. The larger the value 

of K , the higher the emphasis on the global search. 

The Lipschitzian approach followed by Shubert has two main disadvantages: 

1) Need to specify the correct value of Lipschitz constant K 

2) Need 2n  function evaluations for n-dimensional design space. 

These problems are fixed in the DIRECT algorithm proposed by D. Jones in 

which the sampling is done at the center point of the interval rather than at the endpoints 

to reduce the number of function evaluations. The balance between the local and global 

search in the DIRECT algorithm is made by selecting the optimal intervals (optimal 

rectangles) assuming all possible values for the Lipschitz constant. For example, assume 

that Figure 3.1 is divided in to 10 intervals (10 center points) and the function values at 

the center points of the intervals are evaluated. A plot showing these 10 points with the 

width of the interval on the x-axis and the corresponding function value is shown in 

Figure 3.2. If a line with a slope given by Lipschitz constant K is drawn from a point, 

then the y-intercept is the local bound for the function. Instead of fixing one value of K , 

various possible values of K are taken. This gives the lowest lower bound intervals 
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20 
represented by the lower convex hull of points shown in Figure 3.2. The same procedure 

will be followed to select the optimal rectangles in DIRECT algorithm.   

Figure 3.2 Rectangle selection using all possible K 

DIRECT algorithm is based on the above theoretical background. A brief 

introduction of the DIRECT algorithm is presented here. A detailed explanation of the 

DIRECT algorithm can be found in [14].  

DIRECT algorithm is basically a sampling algorithm. The algorithm begins by 

scaling the design box to an n dimensional unit hypercube for a n dimensional design 

problem. DIRECT initiates its search by evaluating the objective function at the center 

point of the hypercube. DIRECT then trisects this hyperrectangle and samples the center 

points of the two resulting hyperrectangles. From here, DIRECT selects the optimal 

hyperrectangles using various values of Lipschitz constant and trisects them. An example 

selection of the optimal hyperrectangles is shown by the lower convex hull of dots in 

Figure 3.2. The selection of optimal hyperrectangles selects the larger rectangles (global 

search) as well as smaller rectangles (local search). This division process continues until 
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21 
pre-specified function evaluations are reached or convergence is achieved. The division 

of rectangles in first three iterations of a two dimensional problem is illustrated in Figure 

3.3. In this figure d represents the center to vertex distance and the numerals located 

above the center points represent the label for the corresponding rectangles. 

Figure 3.3 First three iterations of a two dimensional problem 

In the first iteration, the unit hypercube is trisected into three rectangles. The 

objective function value is evaluated at the center points of the three resulted rectangles. 

The objective function values are plotted against the center – vertex distance as shown in 

Figure 3.4(a). Then the rectangle with least objective value in each column of dots is 

selected as the optimal rectangle. In the first iteration there is only one column of dots; 

therefore rectangle 1 is selected as the optimal rectangle and trisected in the second 

iteration. Similarly in the second iteration, rectangle 4 and rectangle 2 are the least 
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22 
objective valued rectangles as shown in Figure 3.4(b). These two rectangles are selected 

as optimal rectangles and trisected in the third iteration. This process is continued until 

the maximum number of objective function evaluations are exhausted. 

Figure 3.4 Selection of optimal rectangles in each iteration 

The inequality constraints are handled by an auxiliary function given in [14] that 

combines the information of the objective and constraint functions. The auxiliary 

equation is given in equation (6) and is a weighed sum of the violated constraints and the 

deviation of the objective function value from a projected global minimum. 

* max( fr − f ,0)+∑ 
m 

c j max(grj ,0)  (6) 
j =1 

In the above equation, fr  is the objective function value at the center point of the 

rectangle r , f *  is the assumed global minimum, m is the number of inequality 

constraints, c j  are the positive weighing coefficients, and grj  is the constraint violation 

of the jth constraint at the midpoint of rectangle r . 
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23 
3.1.2 Flowchart 

A flowchart explaining the DIRECT algorithm is shown in Figure 3.5. 

Figure 3.5 Flowchart showing the DIRECT algorithm 
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24 
Initially, DIRECT converts the n  dimensional design space in to a n  dimensional 

unit hypercube. It samples and evaluates at the center point of this rectangle. This 

function value is assigned to fmin  which holds the minimum function objective value. 

Then a set of optimal rectangles is selected assuming various possible values for the 

Lipschitz constant. These rectangles form the lower convex hull of dots as shown in 

Figure 3.2. However, in the first iteration, the only present rectangle is selected as the 

optimal rectangle. Each rectangle in the optimal rectangle set is trisected to give two 

more rectangles (left and right rectangles). Objective function is evaluated at the center 

points of the left and right rectangles and fmin  is updated if there is an improvement in 

the objective function. The whole process is continued until a pre-specified number of 

function evaluations. 

3.1.3 Advantages/Disadvantages 

DIRECT algorithm has no tuning parameters in order to get good algorithm 

performance. Also, the user is not required to specify the starting point since DIRECT 

starts at the center point of the design space as its initial point. Therefore, it eliminates the 

problem of choosing a good starting point. Note here that the local optimizers require a 

good initial point to reach the optimum value. Another advantage is that it covers the 

entire design space, avoiding any chance of missing the global optimum. 

DIRECT converges to the global optimal region with few function evaluations but 

needs more number of function evaluations to actually reach the global optimum.   
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25 
3.2 Simulated Annealing 

Simulated Annealing comes under the class of stochastic algorithms, which 

means that they follow a random path in every searching process for global optimum. 

Simulated Annealing has been presented by large number of authors, but Kirkpatrick et 

al. [17] started using the Simulated Annealing method in various combinatorial problems. 

Simulated Annealing is based on the Metropolis Monte Carlo Simulation proposed in 

[18]. 

3.2.1 Algorithm Description 

Simulated Annealing algorithm is an analogy between the annealing process 

occurring in metals and the function minimization. This analogy is explained briefly here. 

When metals are at high temperatures, the atoms can move relatively freely in the higher 

energy states; but as the temperature is decreased slowly, the atoms can move freely 

enough and begin adopting the most stable orientation by taking the lowest possible 

energy state. If the temperature is decreased rapidly, the atoms become frozen at a high 

energy state. Attaining the lowest possible state can be thought as reaching the global 

minimum in the optimization process. The temperature is decreased slowly (cooling) so 

that the design will find the global minimum (lowest energy state).  

The algorithm starts by evaluating the objective function at a random design 

point. From this design point, the algorithm jumps to new random design point and 

evaluates the objective function value and feasibility. If the current point is better than the 

previous, then the current point is accepted to be optimal point; if the current point is 
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worse than the previous point then its acceptance or rejection depends on the Metropolis 

probability criterion given below: 

f − fnew current 

TP ( f , T ) = e 
[ ] 

(7)  

From the above equation, it can be seen that the new point is more likely to be 

accepted, if the new design point function value is close to the current design point 

function value. And also, the probability of accepting a design point is more when the 

temperature is high. Note here that the algorithm may accept a new design point even 

when it is worse (has a higher function value) than the current one. It is this feature that 

prevents the method from getting stuck in a local minimum. So, initially when the 

temperature is high, the simulating algorithm does a global search where even worse 

design points are more likely to be accepted and switches to local search when the 

temperature is decreased where worse design points are less likely to be selected.  Thus, 

the switching from the global search to local search depends on the value of the 

temperature. Another parameter which is responsible for the switching from the global to 

local search is the maximum step size. This variable is reduced as the algorithm 

progresses forcing the algorithm to search more locally. The algorithm is terminated 

when the temperature reduction cycles reach the specified number or until the number of 

function evaluations are exhausted. 
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27 
3.2.2 Tunable Parameters 

Simulated Annealing has many parameters that needs to be tuned to improve the 

efficiency of the algorithm. So, particular attention should be given to these parameters. 

The parameters used in this algorithm are described below: 

• Num _ steps : Number of steps before reducing the temperature and maximum 
step size. 

• T0 _ init : Initial temperature. 

• V0 _ init : Initial step size (maximum). 

• Temp _ red : Temperature reduction factor. The temperature for the next cycle 
is reduced by this factor. 

• V0 _ red : This factor is multiplied with the initial step size to get the step size 
for the next design point. 

3.2.3 Flowchart 

A flowchart showing the core of the Simulated Annealing is shown in Figure 3.6.  
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Figure 3.6 Flowchart showing the Simulated Annealing Algorithm 

Simulated Annealing starts by initializing a temperature t . Next, a random design 

point xn  is selected such that it satisfies all the constraints (feasible point). This point is 

passed as the current point to the algorithm core. Simulated Annealing is carried out in 
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29 
two loops. The outer loop defines the number of function evaluations that the algorithm 

must run before terminating. This parameter is defined by max_funevals parameter. The 

inner loop defines the number of steps after which the temperature and the step size is 

reduced. This parameter is defined by num_steps parameter. As discussed above, this 

parameter is responsible for the switching from the global to local search. As shown in 

the flowchart, the feasible point found initially is made as the current point xn . Then, it 

makes a random step to xn+1  and the objective function value and the constraints are 

calculated in the next step.  The current step size is used in finding the new design point. 

In the next step, the function value and the constraints at this design point are evaluated. 

Then the new design point is compared with the old design point to see whether it is 

better or not. This comparison is done by penalty method. A quadratic penalty function 

given in equation (8) is used. 

⎧ ⎡ max(0, g ( )) 2 
n x ⎤⎫⎪ j i ⎪Penalty(xi ) = f ( )i +∑⎨ f ( )i ⎢ ⎥⎬  (8)x x 

j=1 ⎪ ⎢⎣boundingvalue j ⎥⎦⎪⎩ ⎭ 

This function gives a higher penalty to the design points which violates the 

constraints more. So, if the penalty of the current point xn+1  is less than the penalty for 

the design point xn  then it is accepted and tested if it is better than the current optimum. 

If it is better, then it is assigned as the current optimum and this point is fed back to 

generate a new design point. If the penalty of the current point xn+1  is more than the 

penalty for the design point xn  then the decision of its acceptance is taken using 

Metropolis criterion given in equation (7). If the current point is accepted then a new 
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design point is generated based on design point xn+1 . If it is not accepted then a new 

design point is generated from the previous design point xn . 

3.2.4 Advantages/Disadvantages 

The main advantage of SA is that it is a very efficient algorithm for finding the 

global minima. It accepts some worse points during the process in hope of finding global 

minima. Another advantage is that it doesn’t cover the entire design space to find the 

global minima.  

The disadvantage of the SA is the tuning parameters discussed above. Right set of 

parameters are needed to improve the efficiency of the algorithm. This tuning in turn 

becomes an optimization problem. SA is efficient in finding the region of global minima 

but it may take more number of function evaluations to find the true global minima. 

3.3 Genetic Algorithm 

Genetic algorithms [19, 20] are based on evolutionary processes and Darwin's 

concept of natural selection. In this selection, only the fittest populations survive while 

the bad populations are weeded out. During the process, several natural processes like 

crossover, mutation, and natural selection are used to select the bestfit population. The 

same concept is extended to the mathematical optimization problems where only good 

design points are selected while the bad design points are neglected. In this context, the 

objective function is usually referred to as a fitness function, and the process of “survival 

of the fittest” implies a maximization procedure. 
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3.3.1 Flowchart 

The flowchart for the Genetic Algorithm is given in Figure 3.7. 

Figure 3.7 Flowchart showing the Genetic Algorithm 

Genetic Algorithm begins by randomly generating or seeding an initial population 

of candidate solutions (design points). Starting with the initial random population, GA 

then applies a sequence of operations like the design crossover where two individuals 
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32 
(parents) from the initial population are selected randomly and are reproduced to get two 

new individuals (children) and mutation where one individual from the initial population 

is slightly changed to get a new individual. If the newly generated individuals created by 

the crossover and the mutation operators are better than the parents used, then the parents 

are replaced by the newly created individuals. Again at the end, the worst design points 

are weeded out from the population in order to improve the fitness function. The above 

entire process can be termed as one generation and is continued for several generations or 

until the maximum number of function evaluations are exhausted in order to further 

improve the fitness function.  

3.3.2 Operators and Selection Method 

Arithmetic crossover operator is implemented in this study. Two parents 

reproduce to generate two new individuals (children). The parent individuals are selected 

randomly. The newly generated individuals can be represented as a linear combination of 

the parents as shown in equation (9) 

X = r.X + (1− r).Xind1 par1 par 2  (9)
X = (1− r).X + r.Xind 2 par1 par 2 

In equation (9), Xind1, Xind 2  represent the two new created individuals, 

X par1, X par 2  represent the parents and r represents a random variable between 0 and 1. 

In mutation a parent is selected and is altered to get a new individual. Uniform 

mutation is implemented in this study. 

A selection method is needed to choose the bestfit individuals. A normalized 

geometric selection method which is a ranking type method is used as the selection 
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method. The ranking method was chosen because of the presence of negative fitness. 

With this selection method, a probability is assigned to each individual of the population 

given by equation (10), where q is the probability of selecting the best design, r is the 

rank of the individual, and P is the population size. 

q r −1Each individual probability = P (1− q)  (10)
1− (1− q) 

3.3.3 Tunable Parameters 

Like Simulated Annealing, GA has many parameters that need to be tuned for a 

better performance although GA has less number of tunable parameters compared to SA. 

The tunable parameters and their description are given below: 

• Pop_size: number of individuals in a generation.  

• xoverFNs: number of times the crossover operation is to be done. 

• mutFNs: number of times the mutation operation is to be done. 

3.3.4 Advantages/Disadvantages                              

The initial population generated primarily determines a good starting point for 

GA. So, it can be seeded by some good design points to improve its efficiency. Different 

types of selection methods, crossover and mutation operators can be specified based on 

the design problem. 

The major disadvantage is the tuning of the parameters. And also, the initial 

population is randomly chosen. This random initial population may not cover the entire 

design space uniformly. It was observed that most of the design points generated by the 

crossover and mutation operators were not able to meet the constraints (infeasible points) 
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because the operators have no knowledge of the constraints. This resulted in many 

infeasible points. This was the reason why the algorithm had difficulty in improving the 

best objective function value found in the initial random population.    

3.4 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is an evolution-based stochastic global 

optimization technique developed by Kennedy and Eberhart [21]. PSO is based on the 

Swarm Intelligence found in the natural systems. Such systems are typically made up of a 

population (swarm) of simple agents or particles interacting locally with one another and 

with their environment. Bird flocking, ant colonies, animal herding etc. are a few of the 

examples for such natural systems. In these systems, the local interactions between the 

agents such as changing the position and velocity lead to the global behavior.  The same 

technique can be applied in the optimization problems to find global maxima. 

3.4.1 Algorithm description 

Just like GA, PSO is a population-based search procedure. It starts by initializing 

random solutions called particles in the multi-dimensional design space. In a PSO 

system, each particle flies in the multi-dimensional design space looking for the global 

maximum. Each particle in the PSO is defined by a point in the design space called 

position and its flight speed called velocity. And also, each particle is aware of its best 

position reached so far (pbest) and the best position of the group so far (gbest). During 

flight, each particle adjusts its position according to its own experience (pbest value), and 

according to the experience of its neighboring particles (gbest value). The position is 
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modified using the concept of velocity. The velocity of each particle is updated as 

follows: 

n+1 n nv = kv +α rand (pbest − p )+α rand (gbest − p n )  (11)i i 1 1 i i 2 2 i 

where vi
n+1  is the velocity of the particle i  at iteration n +1, k  is the weighing 

function, α  and α  are the weighing factors, rand  and rand are two random numbers 1 2 1 2 

between 0 and 1, pi
n  is the position of the particle i  at iteration n , pbesti  is the best 

position of the particle i , gbest is the best position of the group (best of all pbests ). In 

this study k =0.6 and α1=α2 =1.7 are taken for better convergence [22]. Similarly, the 

position is updated as follows: 

n+1 n n+1p = p + v  (12)i i i 

The velocity and position updating for particle i  is illustrated in Figure 3.8. Note 

here that Figure 3.8 represents a two dimensional problem. 

Figure 3.8 Updating velocity and position in PSO 
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From Figure 3.8, it can be seen that the position of the particle is adjusting itself 

towards the gbest position. This is because the velocity has changed its direction towards 

the pbest and gbest values. 

The constraints in PSO are treated the same way as in SA and GA. A penalty is 

assigned to each design point using equation (8). The penalty is used to update the pbest 

and gbest for each particle. For a particle i , pbest value is updated if the penalty of the 

particle is less than the previous best penalty. And the same is done when the gbest is 

updated. This makes sure that the objective function is maximized.  

3.4.2 Flowchart 

The flowchart representing the PSO code is shown in Figure 3.9. The algorithm 

starts by initializing a population (particles) of random design points. In the case of PSO, 

the random solutions are normalized for a better performance. The population size ( n ) is 

user defined. The random design points are evaluated to give in the next step. Initially, 

the best position values ( pbest ) and the best objective values ( pbestval ) of each particle 

are assigned to staring position values ( pos ) and the best starting values ( out ). 
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Figure 3.9 Flowchart of Particle Swarm Optimization 

The best value of all the particles ( gbestval ) is the least value of all pbest ' .s  The  

variable gbestval  holds the current best global maximum of the objective function. Next, 
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a while loop is run for specified number of function evaluations. The while loop updates 

the pbest  and pbestval  values if there is any improvement in the current pbestval 

value. It also updates gbestval  if there is an improvement. The updated pbest  and gbest 

are used in determining the new velocity ( vel ) and position (pos). The function 

evaluations ( fevals ) are incremented by the population size every iteration. 

3.4.3 Advantages/Disadvantages 

The major advantage of the PSO algorithm is that fewer parameters must be 

adjusted compared to SA and GA. The constants in the updating velocity are very critical 

in obtaining better performance. Many sets of constants are available suitable for specific 

problems. Moreover, no natural operators like crossover, mutation and selection are 

present in PSO.  PSO is easier to understand because it involves simple equations. 

The disadvantage lies in the selection of the constants in the velocity updating. If 

inappropriate constants are taken then the problem may not converge to the optimum. 

3.5 Summary of Global Algorithms 

A summary of global algorithms is given in Table 3.1. The thesis focuses on four 

global algorithms – DIRECT, Simulated Annealing, Genetic Algorithm, and Particle 

Swarm Optimization.  

Of the four optimization algorithms, DIRECT is a deterministic algorithm. 

Deterministic algorithm follows a fixed way towards the global optimum in every 

searching process. The other three algorithms are stochastic algorithms. Stochastic 
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algorithms start at a random point and follow a random path towards the global optimum 

in every searching process.  

DIRECT moves towards the global optimum by trisecting the multi-dimension 

design space and selecting the optimal rectangles. It begins at the center point of the 

multi-dimensional design space in the searching process. The constraints in DIRECT are 

handled using an auxiliary function given in equation 6. The main advantages of 

DIRECT are it covers the entire design space in search of global optimum and it does not 

have tuning parameters.  

Simulated Annealing is based on the annealing process in metals. As the 

temperature is decreased, SA accepts better points that improve the objective function. 

The constraints in SA are handled using a penalty function given in equation 8. SA is 

able to find the global optimum without covering the entire design space. The 

disadvantage of SA is that its performance depends on the tuning parameters.  

Genetic algorithm is based on the evolutionary processes and Darwin’s concept of 

natural selection. It begins by seeding a random population and it moves towards the 

global optimum by selecting best populations while weeding out bad populations. During 

the process, GA uses operators like crossover, mutation and natural selection to find the 

optimal solution. A number of different types of operators can be selected which may suit 

the design problem.  

Particle Swarm optimization is based on the swarm intelligence found in the 

natural systems. In a swarm, the agents or design points fly in a multi-dimensional space 

towards the optimal solution using the experience of itself and the experience of its 
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40 
neighbors. Like GA, PSO also begins by seeding a population and updates the velocity 

and position of each design point until it reaches the global solution. The constraints in 

PSO are handled using the same penalty function as in the case of GA and SA. PSO is 

simple to understand because of its simple equations. The disadvantage of PSO is in 

selecting the optimal parameter values. 

Table 3.1 Summary of global algorithms 

Algorithm Type Starting 
point 

Tuning 
parameters 

Initialize 
population 

Handling 
constraints 

DIRECT Deterministic Center point No No 
Auxiliary 

function given 
in equation 6 

Simulated 
Annealing Stochastic Random Yes No 

Penalty 
function given 
in equation 8 

Genetic 
Algorithm Stochastic Random Yes Yes 

Penalty 
function given 
in equation 8 

Particle 
Swarm 

optimization 
Stochastic Random Yes Yes 

Penalty 
function given 
in equation 8 
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CHAPTER IV  

SIMULATION AND ANALYSIS 

4.1 Problem Statement 

Hybrid Electric Vehicle has the potential to substantially improve fuel economy 

due to its efficient engine loading. The extent of this improvement greatly depends on the 

component optimization. The input-output relationships of these components are modeled 

using the design variables in the modeling process. Each component is modeled using 

several design variables. For instance, the energy storage system has variables 

representing the number of energy modules, maximum capacity of each module, nominal 

voltage of each module, weight, etc. Because the HEV model involves hundreds of 

design variables, it is difficult to optimize all the design variables. So, only those design 

variables that have a maximum impact on the final objective are considered for the 

optimization. The power ratings of the energy sources are definitely the first choice in the 

design variables. 

The objective of this optimization problem is to maximize fuel economy on a 

composite driving cycle and to improve the vehicle performance. The driving cycle is 

composed of city driving represented by FTP-75 (Federal Test Procedure) and the 

Highway driving represented by HEFET (Highway Fuel Economy Test). The two drive 

cycles are shown in Figure 4.1 and Figure 4.2. 

41 
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Figure 4.1 FET -75 drive cycle 

Figure 4.2 HWFET drive cycle 

The fuel economy from each of these drive cycles is combined to get the 

composite fuel economy. By definition, composite fuel economy is the harmonic average 

of the SOC-balanced fuel economy values during the two separate drive cycles. The 

composite fuel economy can be calculated as follows: 
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1CompositeFuelEconomy = 0.55 0.45
+ 

City _ FE Hwy _ FE 

where City_FE and Hwy_FE represents the city and highway fuel economy 

values respectively.  

In this study, the vehicle model gui_par_midsize_cavalier_ISG_in.m (available in 

the PSAT model library) is taken for the optimization study. This vehicle is a 2 wheel-

drive starter-alternator parallel configuration with manual transmission. The basic 

configuration of the parallel HEV used for optimization is illustrated in Figure 4.3 and 

main components of the vehicle are listed in Table 4.1. 

Figure 4.3 Configuration of the selected HEV 
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Table 4.1 Selected Parallel HEV configuration 

Component Description 

Fuel Converter 84 kW and 2.2 L Cavalier Gasoline Engine  

Motor ECOSTAR motor model with continuous power of 33 kW 
and peak power of 66 kW 

Battery NiMH Panasonic Battery with capacity 6.5 Ah and 240 cells 

Transmission 4 speed manual gearbox with final drive ratio 3.63 

Control strategy Propelling, Shifting and Braking 

Table 4.2 shows the six design variables and their description. The first two 

define the power ratings of the fuel converter and motor controller. The third, fourth and 

fifth variables define the number of battery modules, minimum battery State of Charge 

(SOC) allowed and maximum battery SOC allowed. The sixth design variable defines 

final drive ratio. The lower and upper bounds for the design variables are given in third 

and the fourth column respectively. 

Table 4.2 Lower and upper bounds of design variables 

Design Variable Description Lower Bound Upper Bound 

eng.scale.pwr_max_des Fuel converter power 
rating 40 kW 100 kW 

mc.scale.pwr_max_des Motor Controller power 
rating 10 kW 80 kW 

ess.init.num_module Battery number of cells 150 350 

ess.init.soc_min Minimum SOC allowed 0.2 0.4 

ess.init.soc_max Maximum SOC allowed 0.6 0.9 

fd.init.ratio Final drive ratio 2 4 
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Vehicle performance constraints are imposed on the design problem to ensure the 

requirement on performance of the vehicle is met. The following constraints are imposed 

on the design problem: 

Acceleration time 0 - 60 mph <= 18.1 s 

Acceleration time 40 - 60 mph <= 7 s 

Acceleration time 0 - 85 mph <= 35.1 s 

Maximum Acceleration >= 3.583 m/s2 

The general optimization procedure followed for the HEV design problem is 

described here. The optimization procedure can be thought as a two-step process. In the 

first step, the default vehicle model is run for the fuel economy and vehicle performance 

values. In the second step, the same vehicle model with bounds given in Table 4.2 is 

looped with the optimization routines and run for some predefined number of function 

evaluations. Then, the fuel economy and the vehicle performance values for each 

optimization routine are recorded. The stochastic algorithms are run twice and the best 

results are considered. A comparison of the fuel economy and the vehicle performance is 

done at the end for each optimization algorithm. Also, a comparison of the algorithm 

efficiency is also done. 

4.2 Running a Simulation 

In section 2.1, a brief overview is given about the optimization process. The 

optimization process is explained in detail here with the Matlab files (.m files) used for 

the DIRECT algorithm. However, the process is same for the other three algorithms. The 
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optimization is carried out using five Matlab files. The interaction between the five files 

is illustrated in Figure 4.4 and a brief description of each file is given below: 

• psat_opt.m: Main script file to run the optimization. 

• gclSolve.m: Matlab implementation of the DIRECT algorithm. 

• run_func.m: Loads objective function value (f) by calling run_psat.m. 

• run_psat.m: Invokes PSAT and evaluates objective function value (f) and 

performance values (g). 

• run_con.m: Loads the vehicle performance values (g). 

Figure 4.4 File interaction in HEV optimization  
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From the above figure, it can be seen that the optimization is started by running 

the psat_opt.m file. The design variable bounds and maximum number of function 

evaluations are also assigned in this file.  It then calls gclSolve.m (Matlab implementation 

of DIRECT algorithm). Then the DIRECT algorithm iterates until the maximum number 

of function evaluations are exhausted. For each function evaluation, DIRECT feeds the 

run_func.m with a design point for an improvement in the objective function. The 

run_func.m in turn calls run_psat.m. In the run_psat.m, the PSAT is invoked and the 

objective function (f) and vehicle performance values (g) are evaluated. Now the process 

returns to the run_func.m where the objective function value (f) is loaded. Next, the 

process returns to gclSolve.m. Later, gclSolve.m calls run_con.m where the performance 

values are loaded.  

4.3 HEV Optimization Results 

Step (1): In this step, the default vehicle model 

gui_par_midsize_cavalier_ISG_in.m is run to get the fuel economy and the vehicle 

performance values. This is done in the simulation setup  in the PSAT GUI. The design 

variables are given in Table 4.3. The fuel economy was observed to be 35.1 mpg and the 

vehicle performance values are given in Table 4.4. Note here that the constraints of the 

HEV design problem are actually the performance of the initial vehicle.  
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Table 4.3 Initial design variable values 

Design variable Initial Value 

eng.pwr_max_des 86 kW 

mc.pwr_max_des 65.9 kW 

ess.init.num_module 240 

ess.init.soc_min 0 

ess.init.soc_max 1 

fd.init.ratio 3.63 

Table 4.4  Initial vehicle performance 

Performance parameter Performance value 

Time for 0 – 60 mph 18.1 s 

Time for 40 – 60 mph 7 s 

Time for 0 – 85 mph 35.1 s 

Maximum acceleration 3.583 m/s2 

Step (2) In the second step, the optimization algorithms DIRECT, Simulated 

Annealing, Genetic Algorithm, and PSO discussed in chapter III are looped with the 

PSAT vehicle simulator and the optimization is carried on. For this step, the same default 

vehicle configuration given in Table 4.1 is taken and the bounds for the design variables 

are taken as given in Table 4.2. All the four algorithms are allowed to run for 400 

function evaluations. Using the same number of function evaluations will allow us to 

compare the performance of the different algorithms. The entire optimization process for 

each algorithm took approximately 80 - 90 hours to complete. This huge process time is 



www.manaraa.com

   

    

 

 

 

  
 

 
 

 

49 
not due to the algorithm but because of the large time PSAT takes to evaluate each design 

point. For each design point, PSAT takes approximately 10 minutes to evaluate and the 

algorithm takes approximately 2 minutes for the calculations. 

A comparison of the fuel economy before and after the optimization is given in 

Table 4.5. A significant improvement in the fuel economy is seen due to optimization 

although the improvement is less in the case of GA and PSO. Of all the four algorithms, 

SA performed extremely well with an improvement of 5.27 mpg, followed closely by 

DIRECT algorithm with an improvement of 4.54 mpg. This shows that SA is more 

efficient in finding a global optimal solution for this HEV design problem. It was also 

observed that rough initial populations in the case of GA and PSO were responsible for 

their not-so-good performance.  

Table 4.5 Comparison of fuel economy 

Fuel Economy 

Before Optimization After Optimization 
DIRECT SA GA PSO 

35.1 mpg 39.64 mpg 40.37 mpg 37.6 mpg 37.1 mpg 

A comparison of the initial design variables and the optimum design variables 

found by the four optimization algorithms is given in Table 4.6. We see that DIRECT, 

SA and PSO found an almost identical optimum design point (except the variations in the 

number of energy modules), suggesting that these solutions are almost the true global 

optimum. The global optimum is however not validated since PSAT is a quasi-steady 

model and so it is difficult to arrive at an optimal design point in PSAT just by using 

PSAT models. For the GA case, the lack of improvement in the fuel economy is justified 
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50 
by the design point found to be distant from the global optimum, suggesting this is highly 

likely a local minimum. It was also noticed that DIRECT and SA algorithms reduced the 

power ratings of the engine and the motor significantly. 

Table 4.6 Design variables final values 

Design variable Initial value Final value 
DIRECT SA GA PSO 

eng.pwr_max_des 86 kW 83.1 kW 82.4 kW 95.5 kW 87.1 kW 
mc.pwr_max_des 65.9 kW 20.2 kW 21.9 kW 24.2 kW 14.8 kW 

ess.init.num_module 240 245 311 300 238 
ess.init.soc_min 0 0.25 0.22 0.34 0.26 
ess.init.soc_max 1 0.84 0.78 0.89 0.78 

fd.init.ratio 3.63 3.9 4.0 3.49 3.42 

All the four optimization algorithms resulted in improved vehicle performance. 

The performance comparison of the Hybrid Electric Vehicle before and after the 

optimization is given in Table 4.7.  It shows that the optimized vehicle performance is 

greatly improved compared to the unoptmized vehicle performance. The performance 

improvement by SA is far better compared to the other three algorithms.  
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Table 4.7 Comparison of the vehicle performance 

Constraint Constraint 
value 

Before 
Optimization 

After Optimzation 

DIRECT SA GA PSO 

0 – 60 mph <=18.1 s 18.1 s 15.5 s 10.8 s 11.9 s 11.1 s 

40 – 60 mph <=7 s 7 s 6.8 s 5 s 4.4 s 4.9 s 

0 – 85 mph <=35.1 s 35.1 s 30.6 s 20.7 s 21.2 s 22 s 

Max. 
Acceleration 

>=3.583 
m/s2 3.583 m/s2 3.97 m/s2 4.07 

m/s2 
3.94 
m/s2 

3.99 
m/s2 

The mass of the vehicle changes as the design variables change because the mass 

of the vehicle depends on the design variables. In particular, of the chosen six design 

variables, four design variables (power ratings of engine and motor, energy modules and 

final drive ratio) affect the mass of the vehicle. The mass of the vehicle before and after 

the optimization is given in Table 4.8. The mass of the vehicle decreased with DIRECT 

and SA algorithms while the mass of the vehicle increased with GA and PSO algorithms.  

Table 4.8 Comparison of the mass of the vehicle 

Mass of the vehicle 

 Before Optimization After Optimization 
DIRECT SA GA PSO 

1683 kg 1635 kg 1656 kg 1694 kg 1690 kg 

The algorithm performance comparison of the global optimization algorithms is 

shown in Figure 4.5. It shows the best objective function value plotted against the number 

of function evaluations. 
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Figure 4.5  Algorithm performance comparison 

We can see that fuel economy improvement with the SA and DIRECT algorithms 

is very close until 125 function evaluations, after which SA leaped ahead of DIRECT. 

GA and PSO are slow to catch SA and DIRECT initially because they take some function 

evaluations to generate the initial population. The improvement in fuel economy with GA 

and PSO algorithms is similar. After 225 function evaluations, GA and PSO did not find 

any good design point to get further improvement in the fuel economy.   

Figure 4.5 also shows that the rate of improvement in the fuel economy reduced 

considerably after 200 function evaluations. Infact, there is very small improvement for 

large number of function evaluations. This means that the algorithms have reached the 
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plateau region (local) in the objective response and requires large number of function 

evaluations to reach the true global optimum point. The rate of fuel economy 

improvement in the local region can be improved by using a local or derivative-based 

algorithm. The local based algorithms use the derivatives of the objective function to find 

the path of greatest improvement towards the global optimum. A hybrid algorithm which 

is a combination of a global and a local algorithm is developed and tested on two simple 

mathematical functions. The hybrid algorithm results are presented in Appendix A. 

The results in this study can be implemented physically to obtain real performing 

vehicle because PSAT is a quasi-steady simulation tool using models and data from the 

vehicles in the real world. Here, the vehicle ‘gui_par_midsize_cavalier_ISG_in.m’ used 

in this study is based on a midsize Cavalier vehicle. So, the optimization can be viewed 

as scaling the models up or down to increase the fuel economy and improve the vehicle 

performance. And also, the scaling is defined using the bounds which are feasible in the 

real world. For example, in the case of the DIRECT algorithm, it can be seen from Table 

4.6, the engine power rating is scaled down from 86 kW to 83.1 kW, motor power rating 

is scaled down from 65.9 kW to 20.2 kW, number of battery cells are increased from 240 

to 245, minimum soc allowed is increased from 0 to 0.25, maximum soc is decreased 

from 1 to 0.84, and the final drive ratio is increased from 3.63 to 3.9. 
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CHAPTER V  

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

The objectives of this thesis are two-fold. The first objective is to increase the 

composite fuel economy along with an improvement in the vehicle performance of the 

selected Hybrid Electric Vehicle (HEV). The second objective is to see the effect of 

different optimization algorithms on the HEV design problem. Global optimization 

algorithms like DIRECT, Simulated Annealing, Genetic Algorithm and Particle Swarm 

optimization are used. Out of the four algorithms, DIRECT is a deterministic algorithm 

and the other three are stochastic algorithms.   

Results showed that Simulated Annealing found the best optimal solution with a 

fuel economy improvement of approximately 5 mpg compared to the other three 

algorithms. This also shows that SA has the best overall local convergence ability. Also, 

Simulated Annealing performed extremely well out of the four algorithms with best rate 

of objective function value improvement followed closely by the DIRECT algorithm. The 

GA and PSO algorithms were observed to be slow in objective function improvement. 

The slow improvement in the objective function value may be due to the bad initial 

population generated by these two algorithms.  

54 
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In the case of vehicle performance, the improvement in performance value is 

more using SA when compared to the other three algorithms except the 40 – 60mph 

performance value. Correct tuning of the parameters in the SA was observed to be the 

reason for this performance improvement. The other three algorithms also performed well 

to get the vehicle performance close to the vehicle performance achieved by SA. 

The algorithms SA, GA and PSO are stochastic-based methods. These algorithms 

follow a random path in every searching process for finding the global optimum. So, 

these algorithms are run many times to find the best optimal solution. In this design 

problem, the SA is run once while the GA and PSO are run twice before finding the 

optimal results given in this thesis. Therefore, if total simulation time is a concern then 

DIRECT (follows fixed path in every search process) is the best algorithm of all the four 

optimization algorithms. 

The drawback of the global optimization algorithms is the slow convergence to 

the true global optimum once they reach the global optimum region. For the purpose of 

improving convergence, a hybrid algorithm is developed in which a fast converging and 

derivative-based local algorithm (SQP) is combined with the global algorithm (DIRECT). 

Results showed that the hybrid algorithm converged quickly in the case of banana 

function to the global optimum taking less number of function evaluations.  

5.2 Future Work 

In this thesis, a hybrid electric vehicle is optimized for better fuel economy and 

vehicle performance. The HEV design problem involves six design variables and four 

vehicle performance constraints. The number of design variables can be increased 
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between 10 – 15 in the design problem for further improvement in the objective function 

value. However, increasing the number of design variables beyond 20 increases the 

complexity of the design problem and may give diminishing results. The scalability of 

each algorithm can be studied. In the case of stochastic algorithms, the study of 

scalability may be difficult because of the randomness involved in the algorithm 

performance. 

The constraints in the HEV design problem are actually limited to the 

performance values of the initial vehicle. More stringent constraints can be assigned to 

get a better vehicle performance but one should take care that stringent constraints result 

in fewer feasible design points. With fewer feasible points, the algorithm needs more 

number of function evaluations to reach the global optimum because some function 

evaluations will be wasted in finding infeasible points. 

Except for the DIRECT, the performance of the other three algorithms depends on 

the parameter tuning. Since this is a simulation based optimization, there is no theoretical 

way of deciding the optimal parameter values. A trial and error method can be employed 

to arrive at the best values for the parameters. 

The developed hybrid algorithms works well in the  case of simple functions like 

Banana and Camel functions, but when it comes to the case of complex problems like the 

HEV design problem it failed to work. The reason for this lies in the calculation of 

gradients for the search direction and second order derivatives for updating the Hessian 

matrix in the SQP algorithm. SQP finds these derivatives using numerical 

approximations. So, it is highly possible that it can get in to trouble in calculating the first 
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and second order derivatives. Also, many technical papers and user-groups say that 

algorithms get in to trouble if the algorithms have to find both first and second order of 

derivatives numerically unless first order is provided analytically [23, 24]. One of the 

possible solutions for this problem could be to find a local algorithm which can calculate 

two orders of derivatives numerically for this complex problem. Other solution is to use 

local algorithms like nonlinear conjugate gradient methods which uses single order of 

derivatives to find the search direction [25]. 

This thesis focuses on using four global optimization algorithms for the HEV 

design problem. Tabu Search, a meta-heuristic search technique is also used successfully 

in optimizing several complex problems. It avoids revisiting the design points already 

visited in the design space and in this process the algorithm may accept inferior points. 

This approach can lead to exploring new regions in the design space, with the goal of 

finding a solution by globalize search. This approach reduces the number of function 

evaluations. This algorithm can be applied to the HEV design problem. 

The long simulation time is a concern in the HEV problem. It takes 80 – 90 hours 

to complete 400 function evaluations. So, distributed or parallel computing can be 

employed to reduce this huge simulation time. 



www.manaraa.com

    

 

 
 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 

[1] G. Zorpette, “The Smart Hybrid,” IEEE Spectrum, vol. 41 issue 1, pp. 44 - 47, 
Jan. 2004. 

[2] I. Husain, “Electric and hybrid vehicles: Design Fundamentals,” CRC Press, New 
York, 2003. 

[3] C. C. Chan and K. T. Chau, “Modern Electric Vehicle Technology,” Oxford 
University Press, 2001. 

[4] C. C. Chan, “The state of the Art of Electric and Hybrid vehicles,” Proc. of the 
IEEE, vol. 90, no. 2, Feb. 2002. 

[5] PSAT 2005 Brochure [Online]. Available: 
http://www.transportation.anl.gov/pdfs/MC/338.pdf 

[6] PSAT Technical Information [Online]. Available:  
http://www.transportation.anl.gov 

[7] A. D. Belegundu, and T. R. Chandrupatla, “Optimization Concepts and 
Applications in Engineering,” Prentice Hall, New Jersey 1999. 

[8] G. H. Cole, “SIMPLEV: A Simple Electric Vehicle Simulation Program, Version 
2.0 ,” EG&G Idaho, Inc., April 1993. 

[9] A. Campbell, A.Rengan, J. Steffey, and J. Ormiston, “The Simulation of 42-Volt 
Hybrid Electric Vehicle” [online] http://www.math.msu.edu/Graduate/ 

[10] K. L. Butler, M. Ehsani, and P. Kamath, “A Matlab-Based Modeling and 
Simulation Package for Electric and Hybrid Electric Vehicle Design,” IEEE 
Trans. on Veh. Tech., vol. 48, no. 6, pp. 1770-1778, Nov. 1999. 

[11] R. D. Senger, “Validation of  ADVISOR as a Simulation Tool for a Series Hybrid 
Electric Vehicle Using the Virginia Tech FutureCar Lumina,” Thesis submitted to 
Virginia Polytechnic Institute and State University, 1997. 

[12] K. B. Wipke, M. R. Cuddy, and S. D. Burch, “ADVISOR 2.1: A User-Friendly 
Advanced Powertrain Simulation Using a Combined Backward/Forward 
Approach,” NREL/JA-540-26839, Sep. 1999. 

58 

http://www.math.msu.edu/Graduate
http://www.transportation.anl.gov
http://www.transportation.anl.gov/pdfs/MC/338.pdf


www.manaraa.com

   

    

 

 

 

 
   

 

 

 

 

 

 

 

 

59 
   [13] K. Schittkowski, "NLQPL: A FORTRAN-Subroutine Solving Constrained 

Nonlinear Programming Problems," Annals of Operations Research, vol. 5, pp 
485-500, 1985. 

[14] D. R. Jones, “DIRECT Global Optimization Algorithm,” Encyclopedia of 
Optimization, Kluwer Academic Publishers, 2001. 

[15] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitz  optimization 
without Lipschitz constant,” Journal of Optimization Theory and Applications, 
vol. 79, no. 1, Oct. 1993. 

[16] B. Shubert, “A Sequential Method Seeking the Global Maximum of a Function,” 
SIAM Journal on Numerical Analysis, vol. 9, pp. 379-388, 1972. 

[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated 
annealing,” Science, vol. 220, pp. 671-680, 1983. 

[18] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and, E. Teller, 
“Equations of State Calculations by Fast Computing Machines,” Journal Chem. 
Phys., vol. 21, pp. 1087- 1092, 1958 

[19] D. E. Goldberg, Genetic Algorithms in Search and Machine Learning, Addison  
Wesley, Reading, 1989. 

[20] H. J. Holland, Adaptation in Natural and Artificial Systems, an introductory 
analysis with application to biology, control and artificial intelligence, The 
University of Michigan Press, Ann Harbor, USA, 1975. 

[21] J. Kennedy, and R. Eberhart, “Particle Swarm Optimization,” Proc. IEEE Intl. 
Conference on Neural Networks, vol. IV, pp.1942-1948, 1995. 

[22] I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis 
and parameter selection,” Information Processing Letters, vol. 85, Issue 6, Mar. 
2003. 

[23] O. Wing, J. V. Behar, “Circuit design by minimization using Hessian matrix,” 
IEEE Transactions on Circuits and Systems, vol. 21, no. 5, Sep. 1974. 

[24] A private conversation with Marcelo Marazzi in Mathworks.com Newsgroup. 

[25] A powerpoint presentation from Systems Realization Laboratory, Georgia 
Institute of Technology. Available online: http:// www.srl.gatech.edu/education/ 
ME6103/NLP-Unconstrained-Multivariable.ppt 

www.srl.gatech.edu/education
https://Mathworks.com


www.manaraa.com

   

    

  
  

 
 

60 
 [26] MATLAB Optimization Toolbox 3.0.2 Documentation [Online]. Available: 

http://www.mathworks.com/products/optimization/index.html

 [27] Optimization Toolbox: For Use with Matlab [online]. Available: 
http://www.math.ntnu.no/~hek/Optimering2005/OptimizationToolboxDocumenta 
tionVersion3.pdf 

http://www.math.ntnu.no/~hek/Optimering2005/OptimizationToolboxDocumenta
http://www.mathworks.com/products/optimization/index.html


www.manaraa.com

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

APPENDIX 

HYBRID ALGORITHM 
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Global algorithms are known for their slower convergence to the true global 

optimum once the optimum region is found. For example, the DIRECT converges to the 

optimum region with few number of function evaluations but reaches the true global 

optimum taking a large number of additional function evaluations. For a costly objective 

function evaluation like the one used in this study, it means waste of computing power. 

This drawback of the global algorithms can be overcome by combining it with local 

gradient-based algorithms, which are known for their faster convergence. This hybrid 

approach improves the efficiency of the algorithm and also avoids the need to specify a 

good initial point for the derivative-based methods. A hybrid algorithm combining the 

global algorithm (DIRECT) and local algorithm (SQP) is developed in this section. SQP 

algorithm is available in fmincom.m function as part of the Matlab optimization toolbox.  

Sequential Quadratic Programming (SQP) is a common gradient-based approach 

for solving non-linear problems. It is available as fmincon.m function in the Matlab 

Optimization Toolbox function library [26]. It starts from an initial point xn  and an initial 

approximation of the Hessian H  of the objective function. There are three main stages in 

reaching an optimal solution:- updating the H matrix, form and solve a Quadratic 

Programming (QP) sub-problem to get a search direction, and line search to obtain a new 

approximation of the potential solution. 

At each iteration, a positive definite H  matrix is updated using quasi-Newton 

approximation approach. The function fmincon.m uses the Broyden, Fletcher, Goldfarb 

and Shanno (BFGS) method for the Hessian matrix approximation [27]. The Hessian 

update is done using the following equation: 
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q qT H T Hn n n nH = H + −  (13)n+1 n qT s sT H sn n n n n 

where s = x − x  and q = ∇f (x ) . Starting from an initial approximation of n n+1 n n n+1 

the solution, a Quadratic Programming (QP) problem is solved at each iteration of the 

SQP method, yielding a direction in the search space. To this direction, a vector is 

obtained through line search, in order to produce a sufficient decrease of a merit function. 

This point is considered the new approximation of the solution.  

The implementation of the hybrid algorithm is illustrated using the flowchart 

given in Figure A.1. 



www.manaraa.com

   

    

 

 
 

64 

Figure A.1 Flowchart showing the hybrid algorithm implementation 

The Hybrid algorithm begins by running the global algorithm DIRECT for a 

specified number of iterations n . The final design point and the number of function 

evaluation n  are transmitted to the SQP algorithm. The SQP algorithm starts at the final 

design point obtained from the DIRECT algorithm. The SQP algorithm will be iterated 
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until the maximum number of function evaluations max_ funevals  and returns the 

optimal solution. 

To test its efficiency, the hybrid algorithm is applied to minimize two test 

functions – Rosenbrook’s Banana function and 3-Hump Camel Back function followed 

by a comparison between the DIRECT, SQP and Hybrid algorithm. The efficiency is 

based on the least number of function evaluations each algorithm takes to reach the 

assumed objective function error value of 0.01. 

The equations for the Banana and the Camel function are given in equation (14) 

and (15) respectively. Their corresponding plots are shown in Figure A.2.  

f (x, y) = 100(y − x)2 + (1− x)2          (14)  

2 4 1 6 2f (x, y) = 2x −1.05x + 6 x − xy + y          (15)  

Figure A.2 Two test functions: (a) Rosenbrook’s banana (b) 3-hump Camel back  

The global minimum for the Banana function occurs at (1, 1) with a function 

value of 0. The global minimum for the Camel function occurs at (0, 0) with a function 
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value of 0. The number of function evaluations the DIRECT algorithm is allowed to run 

( n ) is assumed to be 10. Table A.1 and Table A.2 summarize the results obtained for the 

Banana and Camel function respectively. 

Table A.1 Hybrid algorithm on Rosenbrook’s banana function 

Algorithm Bounds 
[x; y] Initial point Function 

Evaluations 
Final design 

point 

Objective 
function 

value 
DIRECT [0 3; 0 3] Not required 175 (1.03 1.05) 9e-3 

SQP [0 3; 0 3] [2 2] 56 (0.996 0.992) 1.11e-4 
Hybrid [0 3; 0 3] Not required 10+23=33 (0.992 0.981) 1.12e-3 

Table A.2 Hybrid algorithm on Camel function 

Algorithm Bounds 
[x; y] 

Initial 
point 

Function 
Evaluations Final design point 

Objective 
function 

value 

DIRECT [-2 3; -2 3] Not 
required 13 (-.055 -.055) 6.163-3 

SQP [-2 3; -2 3] [2 2] 28 (-.000071 -.00019) 3.43e-8 

Hybrid [-2 3; -2 3] Not 
required 10+8=18 (-.036 -.053) 3.03e-3 

In the case of Banana function, the hybrid algorithm performed extremely well 

taking only 33 function evaluations to reach an objective value less than 0.01. In the case 

of the Camel function, the hybrid algorithm did not perform well compared to the 

DIRECT algorithm but it was better compared to SQP. This can be understood by the fact 

that DIRECT performed extremely well taking only 13 function evaluations to satisfy the 

stopping criterion. 
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